Development of a Modular and Submersible Soft Robotic Arm and Corresponding Learned Kinematics Models
Abstract
Many soft-body organisms found in nature flourish underwater. Similarly, soft robots are potentially well-suited for underwater environments partly because the problematic effects of gravity, friction, and harmonic oscillations are less severe underwater. However, it remains a challenge to design, fabricate, waterproof, model, and control underwater soft robotic systems. Furthermore, submersible robots usually do not have configurable components because of the need for sealed electronics and mechanical elements. This work presents the development of a modular and submersible soft robotic arm driven by hydraulic actuators which consists of mostly 3D printable parts which can be assembled or modified in a relatively short amount of time. Its modular design enables multiple shape configurations and easy swapping of soft actuators. As a first step to exploring machine learning control algorithms on this system, we also present preliminary forward and inverse kinematics models developed using deep neural networks.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2022
- DOI:
- arXiv:
- arXiv:2209.09358
- Bibcode:
- 2022arXiv220909358N
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Artificial Intelligence;
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Systems and Control
- E-Print:
- 10 pages, 7 figures