Feasibility study of hybrid inverse planning with transmission beams and single-energy spread-out Bragg peaks for proton FLASH radiotherapy
Abstract
BackgroundUltra-high dose rate (FLASH) proton planning with only transmission beams (TBs) has limitations in normal tissue sparing. The single-energy spread-out Bragg peaks (SESOBPs) of the FLASH dose rate have been demonstrated feasible for proton FLASH planning.PurposeTo investigate the feasibility of combining TBs and SESOBPs for proton FLASH treatment.MethodsA hybrid inverse optimization method was developed to combine the TBs and SESOBPs (TB-SESOBP) for FLASH planning. The SESOBPs were generated field-by-field from spreading out the BPs by pre-designed general bar ridge filters (RFs) and placed at the central target by range shifters (RSs) to obtain a uniform dose within the target. The SESOBPs and TBs were fully placed field-by-field allowing automatic spot selection and weighting in the optimization process. A spot reduction strategy was conducted in the optimization process to push up the minimum MU/spot assuring the plan deliverability at beam current of 165 nA. The TB-SESOBP plans were validated in comparison with the TB only (TB-only) plans and the plans with the combination of TBs and BPs (TB-BP plans) regarding 3D dose and dose rate (dose-averaged dose rate) distributions for five lung cases. The FLASH dose rate coverage (V40Gy/s) was evaluated in the structure volume receiving > 10% of the prescription dose.ResultsCompared to the TB-only plans, the mean spinal cord D1.2cc drastically reduced by 41% (P < 0.05), the mean lung V7Gy and V7.4 Gy moderately reduced by up to 17% (P < 0.05), and the target dose homogeneity slightly increased in the TB-SESOBP plans. Comparable dose homogeneity was achieved in both TB-SESOBP and TB-BP plans. Besides, prominent improvements were achieved in lung sparing for the cases of relatively large targets by the TB-SESOBP plans compared to the TB-BP plans. The targets and the skin were fully covered with the FLASH dose rate in all three plans. For the OARs, V40Gy/s = 100% was achieved by the TB-only plans while V40Gy/s > 85% was obtained by the other two plans.ConclusionWe have demonstrated that the hybrid TB-SESOBP planning was feasible to achieve FLASH dose rate for proton therapy. With pre-designed general bar RFs, the hybrid TB-SESOBP planning could be implemented for proton adaptive FLASH radiotherapy. As an alternative FLASH planning approach to TB-only planning, the hybrid TB-SESOBP planning has great potential in dosimetrically improving OAR sparing while maintaining high target dose homogeneity.
- Publication:
-
Medical Physics
- Pub Date:
- June 2023
- DOI:
- 10.1002/mp.16370
- arXiv:
- arXiv:2209.06370
- Bibcode:
- 2023MedPh..50.3687M
- Keywords:
-
- Physics - Medical Physics
- E-Print:
- doi:10.1002/mp.16370