Pre-modular fusion categories of global dimensions $p^2$
Abstract
Let $p\geq5$ be a prime, we show that a non-pointed modular fusion category $\mathcal{C}$ is Grothendieck equivalent to $\mathcal{C}(\mathfrak{sl}_2,2(p-1))_A^0$ if and only if $\dim(\mathcal{C})=p\cdot u$, where $u$ is a certain totally positive algebraic unit and $A$ is the regular algebra of the Tannakian subcategory $\text{Rep}(\mathbb{Z}_2)\subseteq\mathcal{C}(\mathfrak{sl}_2,2(p-1))$. As a direct corollary, we classify non-simple modular fusion categories of global dimensions $p^2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2022
- DOI:
- arXiv:
- arXiv:2209.04169
- Bibcode:
- 2022arXiv220904169Y
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematics - Category Theory;
- 18M20
- E-Print:
- 25 pages