Stability and error analysis of the SAV schemes for the inductionless MHD equations
Abstract
In this paper, we consider numerical approximations for solving the inductionless magnetohydrodynamic (MHD) equations. By utilizing the scalar auxiliary variable (SAV) approach for dealing with the convective and coupling terms, we propose some first- and second-order schemes for this system. These schemes are linear, decoupled, unconditionally energy stable, and only require solving a sequence of differential equations with constant coefficients at each time step. We further derive a rigorous error analysis for the first-order scheme, establishing optimal convergence rates for the velocity, pressure, current density and electric potential in the two-dimensional case. Numerical examples are presented to verify the theoretical findings and show the performances of the schemes.
- Publication:
-
Communications in Nonlinear Science and Numerical Simulations
- Pub Date:
- March 2024
- DOI:
- arXiv:
- arXiv:2209.04107
- Bibcode:
- 2024CNSNS.13007776Z
- Keywords:
-
- Inductionless MHD equations;
- SAV;
- Energy stable;
- Error estimates;
- Mathematics - Numerical Analysis;
- 65J15;
- 65M12;
- 65M15;
- 76W05
- E-Print:
- 26 pages, 13 figures