Quadratic Gradient: Combining Gradient Algorithms and Newton's Method as One
Abstract
It might be inadequate for the line search technique for Newton's method to use only one floating point number. A column vector of the same size as the gradient might be better than a mere float number to accelerate each of the gradient elements with different rates. Moreover, a square matrix of the same order as the Hessian matrix might be helpful to correct the Hessian matrix. Chiang applied something between a column vector and a square matrix, namely a diagonal matrix, to accelerate the gradient and further proposed a faster gradient variant called quadratic gradient. In this paper, we present a new way to build a new version of the quadratic gradient. This new quadratic gradient doesn't satisfy the convergence conditions of the fixed Hessian Newton's method. However, experimental results show that it sometimes has a better performance than the original one in convergence rate. Also, Chiang speculates that there might be a relation between the Hessian matrix and the learning rate for the first-order gradient descent method. We prove that the floating number $\frac{1}{\epsilon + \max \{| \lambda_i | \}}$ can be a good learning rate of the gradient methods, where $\epsilon$ is a number to avoid division by zero and $\lambda_i$ the eigenvalues of the Hessian matrix.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2022
- DOI:
- arXiv:
- arXiv:2209.03282
- Bibcode:
- 2022arXiv220903282C
- Keywords:
-
- Mathematics - Optimization and Control;
- Computer Science - Machine Learning
- E-Print:
- In this work, we proposed an enhanced Adam method via quadratic gradient and applied the quadratic gradient to the general numerical optimization problems. The quadratic gradient can indeed be used to build enhanced gradient methods for general optimization problems. There is a good chance that quadratic gradient can also be applied to quasi-Newton methods, such as the famous BFGS method