Rasmussen invariants of Whitehead doubles and other satellites
Abstract
We prove formulae for the $\mathbb{F}_2$-Rasmussen invariant of satellite knots of patterns with wrapping number 2, using the multicurve technology for Khovanov and Bar-Natan homology developed by Kotelskiy, Watson, and the second author. A new concordance homomorphism, which is independent of the Rasmussen invariant, plays a central role in these formulae. We also explore whether similar formulae hold for the Ozsváth-Szabó invariant $\tau$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.13612
- arXiv:
- arXiv:2208.13612
- Bibcode:
- 2022arXiv220813612L
- Keywords:
-
- Mathematics - Geometric Topology;
- Mathematics - Quantum Algebra;
- Mathematics - Symplectic Geometry;
- 57K10;
- 57K18
- E-Print:
- 49 pages, 16 figures, 7 tables. Published version