Substantial enhancement in thermoelectric figure-of-merit of half Heusler ZrNiPb alloys
Abstract
Ternary half Heusler alloys are under intense investigations recently towards achieving high thermoelectric figure-of-merit (ZT). Of particular interest is the ZrNiPb based half Heusler (HH) alloy where an optimal value of ZT = 0.7 at 773 K has been achieved by co-doping Sn and Bi at Pb site. In this work, we identify an excellent ZT of 1.3 in ZrNi1+xPb0.38Sn0.6Bi0.02 (x= 0.03, at 773 K) composite alloy. This is achieved by synergistic modulation of electronic as well as thermal properties via introduction of minor phase of full Heusler (FH) in the HH matrix through compositional tuning approach. These Ni-rich ZrNi1+xPb0.38Sn0.6Bi0.02 alloys were synthesized via Arc melting followed by consolidation via Spark Plasma Sintering (SPS). These alloys were characterized by XRD and SEM that shows formation of nanocomposites comprising of HH matrix phase and FH secondary minor phases. Enhancement in ZT is mainly attributed to a synchronized increase in power factor and about 25% decrease in its thermal conductivity. The thermoelectric compatibility factor (S) is also calculated for all samples. The theoretically calculated thermoelectric device efficiency of best performing sample ZrNi1.03Pb0.38Sn0.6Bi0.02 is estimated to be 13.6%. Our results imply that controlled fine tuning in HH compounds through compositional tuning approach would lead to novel off-stoichiometric HH phases with enhanced ZT value for efficient thermoelectric device fabrication.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.13563
- arXiv:
- arXiv:2208.13563
- Bibcode:
- 2022arXiv220813563S
- Keywords:
-
- Condensed Matter - Materials Science;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Other Condensed Matter;
- Condensed Matter - Strongly Correlated Electrons