Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand using Deep Reinforcement Learning
Abstract
Smart energy networks provide for an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind, which are key for deep decarbonisation of energy production. However, given the variability of the renewables as well as the energy demand, it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper, we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices, renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this, we propose a multi-agent deep deterministic policy gradient approach, which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that: (i) integration and optimised operation of the hybrid energy storage system and energy demand reduces carbon emissions by 78.69%, improves cost savings by 23.5% and renewable energy utilisation by over 13.2% compared to other baseline models and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like deep-Q network.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.12779
- arXiv:
- arXiv:2208.12779
- Bibcode:
- 2022arXiv220812779S
- Keywords:
-
- Electrical Engineering and Systems Science - Systems and Control;
- Computer Science - Artificial Intelligence;
- Computer Science - Machine Learning;
- Computer Science - Multiagent Systems
- E-Print:
- 13 pages, 10 figures