Ring Structure of Integer-Valued Rational Functions
Abstract
$\DeclareMathOperator{\IntR}{Int{}^\text{R}}$Integer-valued rational functions are a natural generalization of integer-valued polynomials. Given a domain $D$, the collection of all integer-valued rational functions over $D$ forms a ring extension $\IntR(D)$ of $D$. For a valuation domain $V$, we characterize when $\IntR(V)$ is a Prüfer domain and when $\IntR(V)$ is a Bézout domain. We also extend the classification of when $\IntR(D)$ is a Prüfer domain.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- arXiv:
- arXiv:2208.09935
- Bibcode:
- 2022arXiv220809935L
- Keywords:
-
- Mathematics - Commutative Algebra