Joint ergodicity of piecewise monotone interval maps
Abstract
For $i = 0, 1, 2, \dots, k$ , let µ i be a Borel probability measure on $[0,1]$ which is equivalent to the Lebesgue measure λ and let $T_i:[0,1] \rightarrow [0,1]$ be µ i -preserving ergodic transformations. We say that transformations $T_0, T_1, \dots, T_k$ are uniformly jointly ergodic with respect to $(\lambda; \mu_0, \mu_1, \dots, \mu_k)$ if for any $f_0, f_1, \dots, f_k \in L^{\infty}$ , \begin{align*} \lim\limits_{N -M \rightarrow \infty} \frac{1}{N-M } \sum\limits_{n=M}^{N-1} f_0 ( T_0^{\,n} x) \cdot f_1 (T_1^{\,n} x) \cdots f_k (T_k^{\,n} x) = \prod_{i=0}^k \int f_i \, d \mu_i \quad \text{in } L^2(\lambda). \end{align*}
- Publication:
-
Nonlinearity
- Pub Date:
- June 2023
- DOI:
- 10.1088/1361-6544/acd29a
- arXiv:
- arXiv:2208.08059
- Bibcode:
- 2023Nonli..36.3376B
- Keywords:
-
- joint ergodicity;
- joint mixing;
- piecewise monotone maps;
- entropy;
- 37A25;
- 37E05;
- Mathematics - Dynamical Systems
- E-Print:
- 38 pages