Evaluating and improving real-world evidence with Targeted Learning
Abstract
Purpose: The Targeted Learning roadmap provides a systematic guide for generating and evaluating real-world evidence (RWE). From a regulatory perspective, RWE arises from diverse sources such as randomized controlled trials that make use of real-world data, observational studies, and other study designs. This paper illustrates a principled approach to assessing the validity and interpretability of RWE. Methods: We applied the roadmap to a published observational study of the dose-response association between ritodrine hydrochloride and pulmonary edema among women pregnant with twins in Japan. The goal was to identify barriers to causal effect estimation beyond unmeasured confounding reported by the study's authors, and to explore potential options for overcoming the barriers that robustify results. Results: Following the roadmap raised issues that led us to formulate alternative causal questions that produced more reliable, interpretable RWE. The process revealed a lack of information in the available data to identify a causal dose-response curve. However, under explicit assumptions the effect of treatment with any amount of ritodrine versus none, albeit a less ambitious parameter, can be estimated from data. Conclusion: Before RWE can be used in support of clinical and regulatory decision-making, its quality and reliability must be systematically evaluated. The TL roadmap prescribes how to carry out a thorough, transparent, and realistic assessment of RWE. We recommend this approach be a routine part of any decision-making process.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.07283
- arXiv:
- arXiv:2208.07283
- Bibcode:
- 2022arXiv220807283G
- Keywords:
-
- Statistics - Applications
- E-Print:
- 13 pages, 4 figures