General Cutting Planes for Bound-Propagation-Based Neural Network Verification
Abstract
Bound propagation methods, when combined with branch and bound, are among the most effective methods to formally verify properties of deep neural networks such as correctness, robustness, and safety. However, existing works cannot handle the general form of cutting plane constraints widely accepted in traditional solvers, which are crucial for strengthening verifiers with tightened convex relaxations. In this paper, we generalize the bound propagation procedure to allow the addition of arbitrary cutting plane constraints, including those involving relaxed integer variables that do not appear in existing bound propagation formulations. Our generalized bound propagation method, GCP-CROWN, opens up the opportunity to apply general cutting plane methods for neural network verification while benefiting from the efficiency and GPU acceleration of bound propagation methods. As a case study, we investigate the use of cutting planes generated by off-the-shelf mixed integer programming (MIP) solver. We find that MIP solvers can generate high-quality cutting planes for strengthening bound-propagation-based verifiers using our new formulation. Since the branching-focused bound propagation procedure and the cutting-plane-focused MIP solver can run in parallel utilizing different types of hardware (GPUs and CPUs), their combination can quickly explore a large number of branches with strong cutting planes, leading to strong verification performance. Experiments demonstrate that our method is the first verifier that can completely solve the oval20 benchmark and verify twice as many instances on the oval21 benchmark compared to the best tool in VNN-COMP 2021, and also noticeably outperforms state-of-the-art verifiers on a wide range of benchmarks. GCP-CROWN is part of the $\alpha,\!\beta$-CROWN verifier, the VNN-COMP 2022 winner. Code is available at http://PaperCode.cc/GCP-CROWN
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.05740
- arXiv:
- arXiv:2208.05740
- Bibcode:
- 2022arXiv220805740Z
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Cryptography and Security;
- Computer Science - Computer Vision and Pattern Recognition;
- Mathematics - Optimization and Control;
- Statistics - Machine Learning
- E-Print:
- Accepted by NeurIPS 2022. GCP-CROWN is part of the alpha-beta-CROWN verifier, the VNN-COMP 2022 winner