Distribution of external branch lengths in Yule trees
Abstract
The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -- also called "histories" -- with a finite number $n$ of leaves. We study the lengths $\ell_1 > \ell_2 > ... > \ell_k > ...$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \rightarrow \infty$, we show that the random variable $\ell_k$, once rescaled as $\frac{n-\ell_k}{\sqrt{n/2}}$, follows a $\chi$-distribution with $2k$ degrees of freedom, with mean $\mathbb E(\ell_k) \sim n$ and variance $\mathbb V(\ell_k) \sim n \big(k-\frac{\pi k^2}{16^k} \binom{2k}{k}^2\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.04804
- arXiv:
- arXiv:2208.04804
- Bibcode:
- 2022arXiv220804804D
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Combinatorics;
- Quantitative Biology - Populations and Evolution