Remarks on the determination of the Lorentzian metric by the lengths of geodesics or null-geodesics
Abstract
We consider a Lorentzian metric in $\mathbb{R}\times\mathbb{R}^n$. We show that if we know the lengths of the space-time geodesics starting at $(0,y,\eta)$ when $t=0$, then we can recover the metric at $y$. We prove the rigidity of Lorentzian metrics. We also prove a variant of the rigidity property for the case of null-geodesics: if two metrics are close and if corresponding null-geodesics have equal Euclidian lengths then the metrics are equal.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- arXiv:
- arXiv:2208.01842
- Bibcode:
- 2022arXiv220801842E
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- This article replaces articles arXiv:2208.01842 and arXiv:2205.05860, arXiv:2205.05860 is withdrawn