Materials swelling revealed through automated semantic segmentation of cavities in electron microscopy images
Abstract
Accurately quantifying swelling of alloys that have undergone irradiation is essential for understanding alloy performance in a nuclear reactor and critical for the safe and reliable operation of reactor facilities. However, typical practice is for radiation-induced defects in electron microscopy images of alloys to be manually quantified by domain-expert researchers. Here, we employ an end-to-end deep learning approach using the Mask Regional Convolutional Neural Network (Mask R-CNN) model to detect and quantify nanoscale cavities in irradiated alloys. We have assembled a database of labeled cavity images which includes 400 images, > 34 k discrete cavities, and numerous alloy compositions and irradiation conditions. We have evaluated both statistical (precision, recall, and F1 scores) and materials property-centric (cavity size, density, and swelling) metrics of model performance, and performed targeted analysis of materials swelling assessments. We find our model gives assessments of material swelling with an average (standard deviation) swelling mean absolute error based on random leave-out cross-validation of 0.30 (0.03) percent swelling. This result demonstrates our approach can accurately provide swelling metrics on a per-image and per-condition basis, which can provide helpful insight into material design (e.g., alloy refinement) and impact of service conditions (e.g., temperature, irradiation dose) on swelling. Finally, we find there are cases of test images with poor statistical metrics, but small errors in swelling, pointing to the need for moving beyond traditional classification-based metrics to evaluate object detection models in the context of materials domain applications.
- Publication:
-
Scientific Reports
- Pub Date:
- March 2023
- DOI:
- 10.1038/s41598-023-32454-2
- arXiv:
- arXiv:2208.01460
- Bibcode:
- 2023NatSR..13.5178J
- Keywords:
-
- Condensed Matter - Materials Science