Topology of the Grünbaum--Hadwiger--Ramos problem for mass assignments
Abstract
In this paper, motivated by recent work of Schnider and Axelrod-Freed \& Soberón, we study an extension of the classical Grünbaum--Hadwiger--Ramos mass partition problem to mass assignments. Using the Fadell--Husseini index theory we prove that for a given family of $j$ mass assignments $\mu_1,\dots,\mu_j$ on the Grassmann manifold $G_{\ell}(\R^d)$ and a given integer $k\geq 1$ there exist a linear subspace $L\in G_{\ell}(\R^d)$ and $k$ affine hyperplanes in $L$ that equipart the masses $\mu_1^L,\dots,\mu_j^L$ assigned to the subspace $L$, provided that $d\geq j + (2^{k-1}-1)2^{\lfloor\log_2j\rfloor}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.00666
- arXiv:
- arXiv:2208.00666
- Bibcode:
- 2022arXiv220800666B
- Keywords:
-
- Mathematics - Algebraic Topology