A primal finite element scheme of the Hodge Laplace problem
Abstract
In this paper, a unified family, for any $n\geqslant 2$ and $1\leqslant k\leqslant n-1$, of nonconforming finite element schemes are presented for the primal weak formulation of the $n$-dimensional Hodge-Laplace equation on $H\Lambda^k\cap H^*_0\Lambda^k$ and on the simplicial subdivisions of the domain. The finite element scheme possesses an $\mathcal{O}(h)$-order convergence rate for sufficiently regular data, and an $\mathcal{O}(h^s)$-order rate on any $s$-regular domain, $0<s\leqslant 1$, no matter what topology the domain has.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- arXiv:
- arXiv:2208.00575
- Bibcode:
- 2022arXiv220800575Z
- Keywords:
-
- Mathematics - Numerical Analysis
- E-Print:
- arXiv admin note: text overlap with arXiv:2207.12003