Satellite Image Based Cross-view Localization for Autonomous Vehicle
Abstract
Existing spatial localization techniques for autonomous vehicles mostly use a pre-built 3D-HD map, often constructed using a survey-grade 3D mapping vehicle, which is not only expensive but also laborious. This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy, providing a cheaper and more practical way for localization. While the utilization of satellite imagery for cross-view localization is an established concept, the conventional methodology focuses primarily on image retrieval. This paper introduces a novel approach to cross-view localization that departs from the conventional image retrieval method. Specifically, our method develops (1) a Geometric-align Feature Extractor (GaFE) that leverages measured 3D points to bridge the geometric gap between ground and overhead views, (2) a Pose Aware Branch (PAB) adopting a triplet loss to encourage pose-aware feature extraction, and (3) a Recursive Pose Refine Branch (RPRB) using the Levenberg-Marquardt (LM) algorithm to align the initial pose towards the true vehicle pose iteratively. Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view. The results demonstrate the superiority of our method in cross-view localization with median spatial and angular errors within $1$ meter and $1^\circ$, respectively.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- 10.48550/arXiv.2207.13506
- arXiv:
- arXiv:2207.13506
- Bibcode:
- 2022arXiv220713506W
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted by ICRA2023