Theta functions, fourth moments of eigenforms, and the sup-norm problem II
Abstract
For an $L^2$-normalized holomorphic newform $f$ of weight $k$ on a hyperbolic surface of volume $V$ attached to an Eichler order of squarefree level in an indefinite quaternion algebra over $\mathbb{Q}$, we prove the sup-norm estimate \[ \| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\epsilon} (k V)^{\frac{1}{4}+\epsilon} \] with absolute implied constant. For a cuspidal Maaß newform $\varphi$ of eigenvalue $\lambda$ on such a surface, we prove that \[ \|\varphi \|_{\infty} \ll_{\lambda,\epsilon} V^{\frac{1}{4}+\epsilon}. \] We establish analogous estimates in the setting of definite quaternion algebras.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- arXiv:
- arXiv:2207.12351
- Bibcode:
- 2022arXiv220712351K
- Keywords:
-
- Mathematics - Number Theory;
- 11F12 (11F27;
- 11F70;
- 11F72;
- 11D45;
- 11N75;
- 14G35)
- E-Print:
- 49 pages