High-resolution large-eddy simulations of simplified urban flows
Abstract
High-fidelity large-eddy simulations of the flow around two rectangular obstacles are carried out at a Reynolds number of 10,000 based on the free-stream velocity and the obstacle height. The incoming flow is a developed turbulent boundary layer. Mean-velocity components, turbulence fluctuations, and the terms of the turbulent-kinetic-energy budget are analyzed for three flow regimes: skimming flow, wake interference, and isolated roughness. Three regions are identified where the flow undergoes the most significant changes: the first obstacle's wake, the region in front of the second obstacle, and that around the second obstacle. In the skimming-flow case, turbulence activity in the cavity between the obstacles is limited and mainly occurs in a small region in front of the second obstacle. In the wake-interference case, there is a strong interaction between the free-stream flow that penetrates the cavity and the wake of the first obstacle. This interaction results in more intense turbulent fluctuations between the obstacles. In the isolated-roughness case, the wake of the first obstacle is in good agreement with that of an isolated obstacle. Separation bubbles with strong turbulent fluctuations appear around the second obstacle.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- arXiv:
- arXiv:2207.07210
- Bibcode:
- 2022arXiv220707210A
- Keywords:
-
- Physics - Fluid Dynamics