Hierarchical Average Precision Training for Pertinent Image Retrieval
Abstract
Image Retrieval is commonly evaluated with Average Precision (AP) or Recall@k. Yet, those metrics, are limited to binary labels and do not take into account errors' severity. This paper introduces a new hierarchical AP training method for pertinent image retrieval (HAP-PIER). HAPPIER is based on a new H-AP metric, which leverages a concept hierarchy to refine AP by integrating errors' importance and better evaluate rankings. To train deep models with H-AP, we carefully study the problem's structure and design a smooth lower bound surrogate combined with a clustering loss that ensures consistent ordering. Extensive experiments on 6 datasets show that HAPPIER significantly outperforms state-of-the-art methods for hierarchical retrieval, while being on par with the latest approaches when evaluating fine-grained ranking performances. Finally, we show that HAPPIER leads to better organization of the embedding space, and prevents most severe failure cases of non-hierarchical methods. Our code is publicly available at: https://github.com/elias-ramzi/HAPPIER.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- arXiv:
- arXiv:2207.04873
- Bibcode:
- 2022arXiv220704873R
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Artificial Intelligence;
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Image and Video Processing
- E-Print:
- ECCV 2022, Oct 2022, Tel-Aviv, Israel