Asymptotic Spectral Flow
Abstract
In this paper we study the asymptotic behavior of the spectral flow of a one-parameter family $\{D_s\}$ of Dirac operators acting on the spinor bunldle $S$ twisted by a vector bundle $E$ of rank $k$, with the parameter $s\in [0,r]$ when $r$ gets sufficiently large. Our method uses the variation of eta invariant and local index theory technique. The key is a uniform estimate of the eta invariant $\bar{\eta}(D_r)$ which is established via local index theory technique and heat kernel estimate.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- 10.48550/arXiv.2207.04811
- arXiv:
- arXiv:2207.04811
- Bibcode:
- 2022arXiv220704811D
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- doi:10.1007/s00209-023-03229-2