Skew category algebras and modules on ringed finite sites
Abstract
Let $\mathcal{C}$ be a small category. We investigate ringed sites $(\mathbf{C},\mathfrak{R})$ on $\mathcal{C}$ and the resulting module categories $\mathfrak{M}{\rm od}\text{-}\mathfrak{R}$. When $\mathcal{C}$ is finite, based on Grothendieck and Verdier's classification of finite topoi, we prove that each $\mathfrak{M}{\rm od}\text{-}\mathfrak{R}$ is equivalent to ${\rm Mod}\text{-}\mathfrak{R}|_{\mathcal{D}}[\mathcal{D}]$, where $\mathfrak{R}|_{\mathcal{D}}[\mathcal{D}]$ is the skew category algebra, canonically defined on $(\mathbf{C},\mathfrak{R})$, for a uniquely determined full subcategory $\mathcal{D}\subset\mathcal{C}$ and the restriction $\mathfrak{R}|_{\mathcal{D}}$ of $\mathfrak{R}$ to $\mathcal{D}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2022
- DOI:
- arXiv:
- arXiv:2207.04731
- Bibcode:
- 2022arXiv220704731W
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Category Theory;
- 20C05;
- 18F10;
- 18A25;
- 18F20
- E-Print:
- Journal of Algebra 2023