Semi-blind source separation using convolutive transfer function for nonlinear acoustic echo cancellation
Abstract
The recently proposed semi-blind source separation (SBSS) method for nonlinear acoustic echo cancellation (NAEC) outperforms adaptive NAEC in attenuating the nonlinear acoustic echo. However, the multiplicative transfer function (MTF) approximation makes it unsuitable for real-time applications, especially in highly reverberant environments, and the natural gradient makes it hard to balance well between fast convergence speed and stability. In this paper, two more effective SBSS methods based on auxiliary-function-based independent vector analysis (AuxIVA) and independent low-rank matrix analysis (ILRMA) are proposed. The convolutive transfer function approximation is used instead of the MTF so that a long impulse response can be modeled with a short latency. The optimization schemes used in AuxIVA and ILRMA are carefully regularized according to the constrained demixing matrix of NAEC. The experimental results validate significantly better echo cancellation performances of the proposed methods.
- Publication:
-
Acoustical Society of America Journal
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2207.01556
- Bibcode:
- 2023ASAJ..153...88C
- Keywords:
-
- Electrical Engineering and Systems Science - Audio and Speech Processing;
- Computer Science - Sound;
- Electrical Engineering and Systems Science - Signal Processing
- E-Print:
- doi:10.1121/10.0016823