Recovering Detail in 3D Shapes Using Disparity Maps
Abstract
We present a fine-tuning method to improve the appearance of 3D geometries reconstructed from single images. We leverage advances in monocular depth estimation to obtain disparity maps and present a novel approach to transforming 2D normalized disparity maps into 3D point clouds by using shape priors to solve an optimization on the relevant camera parameters. After creating a 3D point cloud from disparity, we introduce a method to combine the new point cloud with existing information to form a more faithful and detailed final geometry. We demonstrate the efficacy of our approach with multiple experiments on both synthetic and real images.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2022
- DOI:
- 10.48550/arXiv.2207.00182
- arXiv:
- arXiv:2207.00182
- Bibcode:
- 2022arXiv220700182R
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition