Some characterizations of the complex projective space via Ehrhart polynomials
Abstract
Let $P_{\lambda\Sigma_n}$ be the Ehrhart polynomial associated to an intergal multiple $\lambda$ of the standard symplex $\Sigma_n \subset \mathbb{R}^n$. In this paper we prove that if $(M, L)$ is an $n$-dimensional polarized toric manifold with associated Delzant polytope $\Delta$ and Ehrhart polynomial $P_\Delta$ such that $P_{\Delta}=P_{\lambda\Sigma_n}$, for some $\lambda \in \mathbb{Z}^+$, then $(M, L)\cong (\mathbb{C} P^n, O(\lambda))$ (where $O(1)$ is the hyperplane bundle on $\mathbb{C} P^n$) in the following three cases: 1. arbitrary $n$ and $\lambda=1$, 2. $n=2$ and $\lambda =3$, 3. $\lambda =n+1$ under the assumption that the polarization $L$ is asymptotically Chow semistable.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2022
- DOI:
- arXiv:
- arXiv:2206.13977
- Bibcode:
- 2022arXiv220613977L
- Keywords:
-
- Mathematics - Differential Geometry;
- 53C55;
- 32Q15;
- 32T15
- E-Print:
- 10 pages