A Derivative-Hilbert operator acting on Hardy spaces
Abstract
Let $\mu$ be a positive Borel measure on the interval [0,1). The Hankel matrix $\mathcal{H}_\mu= (\mu_{n,k})_{n,k\geq0}$ with entries $\mu_{n,k}= \mu_{n+k}$, where $\mu_n=\int_{ [0,1)}t^nd\mu(t)$, induces formally the operator $$\mathcal{DH}_\mu(f)(z)=\sum_{n=0}^\infty (\sum_{k=0}^\infty \mu_{n,k}a_k)(n+1)z^n$$ on the space of all analytic function $f(z)=\sum_{k=0}^ \infty a_k z^n$ in the unit disc $\mathbb{D}$. We characterize those positive Borel measures on $[0,1)$ such that $\mathcal{DH}_\mu(f)(z)= \int_{[0,1)} \frac{f(t)}{(1-tz)^2} d\mu(t)$ for all in Hardy spaces $H^p(0<p<\infty)$, and among them we describe those for which $\mathcal{DH}_\mu$ is a bounded(resp.,compact) operator from $H^p(0<p <\infty)$ into $H^q(q > p$ and $q\geq 1$). We also study the analogous problem in Hardy spaces $H^p(1\leq p\leq 2)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2022
- DOI:
- arXiv:
- arXiv:2206.12024
- Bibcode:
- 2022arXiv220612024Y
- Keywords:
-
- Mathematics - Complex Variables;
- Mathematics - Functional Analysis