Explicit Subconvexity Estimates for Dirichlet $L$-functions
Abstract
Given a Dirichlet character $\chi$ modulo $q$ and its associated $L$-function, $L(s,\chi)$, we provide an explicit version of Burgess' estimate for $|L(s, \chi)|$. We use partial summation to provide bounds along the vertical lines $\Re{s} = 1 - {r}^{-1}$, where $r$ is a parameter associated with Burgess' character sum estimate. These bounds are then connected across the critical strip using the Phragmén--Lindelöf principle. In particular, for $\sigma \in [\frac{1}{2}, \frac{9}{10}]$, we establish $$|L(\sigma + it, \chi)| \leq (1.105) (0.692)^\sigma q^{\frac{31}{80}-\frac{2}{5}\sigma}(\log{q})^{\frac{33}{16}-\frac{9}{8}\sigma} |\sigma + it|.$$
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2022
- DOI:
- arXiv:
- arXiv:2206.11112
- Bibcode:
- 2022arXiv220611112F
- Keywords:
-
- Mathematics - Number Theory;
- 11M06;
- 11L40
- E-Print:
- 7 pages, 2 tables, feedback welcome