Log-hyperconvexity index and Bergman kernel
Abstract
We obtain a quantitative estimate of Bergman distance when $\Omega \subset \mathbb{C}^n$ is a bounded domain with log-hyperconvexity index $\alpha_l(\Omega)>\frac{n-1+\sqrt{(n-1)(n+3)}}{2}$, as well as the $A^2(\log A)^q$-integrability of the Bergman kernel $K_{\Omega}(\cdot, w)$ when $\alpha_l(\Omega)>0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2022
- DOI:
- arXiv:
- arXiv:2206.10133
- Bibcode:
- 2022arXiv220610133C
- Keywords:
-
- Mathematics - Complex Variables