MontageGAN: Generation and Assembly of Multiple Components by GANs
Abstract
A multi-layer image is more valuable than a single-layer image from a graphic designer's perspective. However, most of the proposed image generation methods so far focus on single-layer images. In this paper, we propose MontageGAN, which is a Generative Adversarial Networks (GAN) framework for generating multi-layer images. Our method utilized a two-step approach consisting of local GANs and global GAN. Each local GAN learns to generate a specific image layer, and the global GAN learns the placement of each generated image layer. Through our experiments, we show the ability of our method to generate multi-layer images and estimate the placement of the generated image layers.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2205.15577
- Bibcode:
- 2022arXiv220515577S
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Electrical Engineering and Systems Science - Image and Video Processing
- E-Print:
- Accepted at ICPR2022