Nil$_{\ast}$-Noetherian rings
Abstract
In this paper, we say a ring $R$ is Nil$_{\ast}$-Noetherian provided that any nil ideal is finitely generated. First, we show that the Hilbert basis theorem holds for Nil$_{\ast}$-Noetherian rings, that is, $R$ is Nil$_{\ast}$-Noetherian if and only if $R[x]$ is Nil$_{\ast}$-Noetherian, if and only if $R[[x]]$ is Nil$_{\ast}$-Noetherian. Then we discuss some Nil$_{\ast}$-Noetherian properties on idealizations and bi-amalgamated algebras. Finally, we give the Cartan-Eilenberg-Bass Theorem for Nil$_{\ast}$-Noetherian rings in terms of Nil$_{\ast}$-injective modules and Nil$_{\ast}$-FP-injective modules. Besides, some examples are given to distinguish Nil$_{\ast}$-Noetherian rings, Nil$_{\ast}$-coherent rings and so on.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- 10.48550/arXiv.2205.11724
- arXiv:
- arXiv:2205.11724
- Bibcode:
- 2022arXiv220511724Z
- Keywords:
-
- Mathematics - Commutative Algebra