Optimal Horoball Packing Densities for Koszul-type tilings in Hyperbolic $3$-space
Abstract
We determine the optimal horoball packing densities for the Koszul-type Coxeter simplex tilings in $\mathbb{H}^3$. We give a family of horoball packings parameterized by the Busemann function and symmetry group that achieve the simplicial packing density upper bound $d_3(\infty) = \left( 2 \sqrt{3} \Lambda\left( \frac{\pi }{3} \right) \right)^{-1} \approx 0.853276$ where $\Lambda$ is the Lobachevsky function.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2205.03945
- Bibcode:
- 2022arXiv220503945K
- Keywords:
-
- Mathematics - Metric Geometry;
- 52C17 52C22 52B15
- E-Print:
- 21 pages, 3 figures, 8 tables. arXiv admin note: substantial text overlap with arXiv:1907.00595, arXiv:1809.05411, arXiv:1401.6084