Quasiconformal, Lipschitz, and BV mappings in metric spaces
Abstract
Consider a mapping $f\colon X\to Y$ between two metric measure spaces. We study generalized versions of the local Lipschitz number $\mathrm{Lip} f$, as well as of the distortion number $H_f$ that is used to define quasiconformal mappings. Using these, we give sufficient conditions for $f$ being a BV mapping $f\in BV_{\mathrm{loc}}(X;Y)$ or a Newton-Sobolev mapping $f\in N_{\mathrm{loc}}^{1,p}(X;Y)$, with $1\le p<\infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2022
- DOI:
- 10.48550/arXiv.2204.12854
- arXiv:
- arXiv:2204.12854
- Bibcode:
- 2022arXiv220412854L
- Keywords:
-
- Mathematics - Metric Geometry;
- 30L10;
- 46E36;
- 26B30