On the nonlinear Schrödinger equation with a toroidal-shaped trap in the strong confinement regime
Abstract
We consider the 3D cubic nonlinear Schrödinger equation (NLS) with a strong toroidal-shaped trap. In the first part, we show that as the confinement is strengthened, a large class of global solutions to the time-dependent model can be described by 1D flows solving the 1D periodic NLS (theorem 1.4). In the second part, we construct a steady state as a constrained energy minimizer, and prove its dimension reduction to the well-known 1D periodic ground state (theorems 1.6 and 1.7). Then, employing the dimension reduction limit, we establish the local uniqueness and the orbital stability of the 3D ring soliton (theorem 1.8). These results justify the emergence of stable quasi-1D periodic dynamics for Bose-Einstein condensates on a ring in physics experiments.
- Publication:
-
Nonlinearity
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2204.12328
- Bibcode:
- 2023Nonli..36.2741H
- Keywords:
-
- nonlinear Schrödinger equation;
- dimension reduction;
- a toroidal-shaped trap;
- 35Q40;
- 35Q55;
- Mathematics - Analysis of PDEs
- E-Print:
- 52 pages