A classification of complete $3$-dimensional self-shrinkers in the Euclidean space $\mathbb R^{4}$
Abstract
In this paper, we completely classify $3$-dimensional complete self-shrinkers with constant norm $S$ of the second fundamental form and constant $f_{3}$ in Euclidean space $\mathbb R^{4}$, where $h_{ij}$ are components of the second fundamental form, $S=\sum_{i,j}h^{2}_{ij}$ and $f_{3}=\sum_{i,j,k}h_{ij}h_{jk}h_{ki}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2022
- DOI:
- arXiv:
- arXiv:2204.11386
- Bibcode:
- 2022arXiv220411386C
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- doi:10.1007/s11425-022-2121-7