Correspondance de Langlands locale $p$-adique et anneaux de Kisin
Abstract
We use a ${\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\mathrm {GL}}_2({\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-Mézard conjecture in the supercuspidal case.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2022
- DOI:
- arXiv:
- arXiv:2204.11217
- Bibcode:
- 2022arXiv220411217C
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry;
- Mathematics - Representation Theory
- E-Print:
- in French language. First version. Comments are welcomeinal version. To appear in Acta Arithmetica