Latency Analysis of Vehicle-to-Pedestrian C-V2X Communications at Urban Street Intersections
Abstract
Cellular Vehicle-to-Everything (C-V2X) technology promises to provide ultra-reliable low latency communication (URLLC) framework for connected vehicles. Connected vehicles can help us improve traffic safety, congestion and reduce fatal accidents. C-V2X promises new levels of connectivity and intelligence providing numerous features like infotainment, always-on telematics, real-time navigation, etc. with heterogeneous network architecture. C-V2X leverages existing cellular architecture and is on the way to replace DSRC/WAVE for vehicular communication. There are still some challenges which needs to be tackled before C-V2X can be deployed for efficient on-road V2X. In this paper, we look at end-to-end latency for Vehicle-to-Pedestrian (V2P) which demands ultra low latencies with reliable packet delivery ratio. To evaluate the LTE-V2P performance, we used network simulator for an urban intersection scenario where vulnerable road-side users (VRUs) are trying to cross the street and they communicate with moving vehicles. We evaluated the end-to-end latency and throughput for the given scenario and concluded that with the existing network architecture the latency is high. By utilizing multi-edge access computing (MEC) servers latency can be reduce drastically and hence can be made feasible for cellular V2P communication.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2022
- DOI:
- arXiv:
- arXiv:2204.10914
- Bibcode:
- 2022arXiv220410914G
- Keywords:
-
- Computer Science - Networking and Internet Architecture
- E-Print:
- 6 pages, 8 figures