Reinforcing Generated Images via Meta-learning for One-Shot Fine-Grained Visual Recognition
Abstract
One-shot fine-grained visual recognition often suffers from the problem of having few training examples for new fine-grained classes. To alleviate this problem, off-the-shelf image generation techniques based on Generative Adversarial Networks (GANs) can potentially create additional training images. However, these GAN-generated images are often not helpful for actually improving the accuracy of one-shot fine-grained recognition. In this paper, we propose a meta-learning framework to combine generated images with original images, so that the resulting "hybrid" training images improve one-shot learning. Specifically, the generic image generator is updated by a few training instances of novel classes, and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. Our experiments demonstrate consistent improvement over baselines on one-shot fine-grained image classification benchmarks. Furthermore, our analysis shows that the reinforced images have more diversity compared to the original and GAN-generated images.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2022
- DOI:
- arXiv:
- arXiv:2204.10689
- Bibcode:
- 2022arXiv220410689T
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted to PAMI 2022. arXiv admin note: substantial text overlap with arXiv:1911.07164