Extremal bounds for Dirichlet polynomials with random multiplicative coefficients
Abstract
For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \frac1{\sqrt{N}} \sum_{n \leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\varepsilon>0$ we show that, with high probability, $$ \exp( (\log N)^{1/2-\varepsilon} ) \ll \sup_{|t| \leq N^C} |D_N(t)| \ll \exp( (\log N)^{1/2+\varepsilon}). $$
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2022
- DOI:
- 10.48550/arXiv.2204.03519
- arXiv:
- arXiv:2204.03519
- Bibcode:
- 2022arXiv220403519B
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Probability