A Densely Connected Criss-Cross Attention Network for Document-level Relation Extraction
Abstract
Document-level relation extraction (RE) aims to identify relations between two entities in a given document. Compared with its sentence-level counterpart, document-level RE requires complex reasoning. Previous research normally completed reasoning through information propagation on the mention-level or entity-level document-graph, but rarely considered reasoning at the entity-pair-level.In this paper, we propose a novel model, called Densely Connected Criss-Cross Attention Network (Dense-CCNet), for document-level RE, which can complete logical reasoning at the entity-pair-level. Specifically, the Dense-CCNet performs entity-pair-level logical reasoning through the Criss-Cross Attention (CCA), which can collect contextual information in horizontal and vertical directions on the entity-pair matrix to enhance the corresponding entity-pair representation. In addition, we densely connect multiple layers of the CCA to simultaneously capture the features of single-hop and multi-hop logical reasoning.We evaluate our Dense-CCNet model on three public document-level RE datasets, DocRED, CDR, and GDA. Experimental results demonstrate that our model achieves state-of-the-art performance on these three datasets.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2022
- DOI:
- 10.48550/arXiv.2203.13953
- arXiv:
- arXiv:2203.13953
- Bibcode:
- 2022arXiv220313953Z
- Keywords:
-
- Computer Science - Computation and Language