Examples of compact quantum groups with $\operatorname{\mathsf{L}^{\!\infty}}(\mathbb{G})$ a factor
Abstract
For each $\lambda\in\left]0,1\right]$ we exhibit an uncountable family of compact quantum groups $\mathbb{G}$ such that the von Neumann algebra $\mathsf{L}^{\!\infty}(\mathbb{G})$ is the injective factor of type $\mathrm{III}_\lambda$ with separable predual. We also show that uncountably many injective factors of type $\mathrm{III}_0$ arise as $\mathsf{L}^{\!\infty}(\mathbb{G})$ for some compact quantum group $\mathbb{G}$. To distinguish between our examples we introduce invariants related to the scaling group modeled on the Connes invariant $T$ for von Neumann algebras and investigate the connection between so obtained invariants of $\mathbb{G}$ and the Connes invariants $T(\mathsf{L}^{\!\infty}(\mathbb{G}))$, $S(\mathsf{L}^{\!\infty}(\mathbb{G}))$. In the final section we show that factors of type $\mathrm{I}$ cannot be obtained as $\mathsf{L}^{\!\infty}(\mathbb{G})$ for a non-trivial compact quantum group $\mathbb{G}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2022
- DOI:
- arXiv:
- arXiv:2203.10976
- Bibcode:
- 2022arXiv220310976K
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis;
- 46L67;
- 46L36
- E-Print:
- Acknowledgments updated