Weighted Calderón-Hardy spaces
Abstract
Let $0 < p \leq 1 < q < \infty$ and $\gamma >0$. In this note we discuss the weighted Calderón-Hardy spaces on $\mathbb{R}^{n}$, $\mathcal{H}^{p}_{q, \gamma}(\mathbb{R}^{n}, w)$. For $\gamma = 2m$, $m \in \mathbb{N}$, and $n (2m + n/q)^{-1} < p \leq 1$, we show that for certain power weights $w$ the iterated Laplace operator $\Delta^{m}$ is a bijective mapping from $\mathcal{H}^{p}_{q, 2m}(\mathbb{R}^{n},w)$ onto $H^{p}(\mathbb{R}^{n}, w)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2022
- DOI:
- arXiv:
- arXiv:2203.10691
- Bibcode:
- 2022arXiv220310691R
- Keywords:
-
- Mathematics - Classical Analysis and ODEs
- E-Print:
- 21 pages. arXiv admin note: text overlap with arXiv:1510.08689