How to construct Gorenstein projective modules relative to complete duality pairs over Morita rings
Abstract
Let $\Delta =\left(\begin{smallmatrix} A & {_AN_B}\\ {_BM_A} & B \\\end{smallmatrix}\right)$ be a Morita ring with $M\otimes_{A}N=0=N\otimes_{B}M$.We first study how to construct (complete) duality pairs of $\Delta$-modules using (complete) duality pairs of $A$-modules and $B$-modules, generalizing the result of Mao (Comm. Algebra, 2020, 12: 5296--5310) about the duality pairs over a triangular matrix ring. Moreover, we construct Gorenstein projective modules relative to complete duality pairs of $\Delta$-modules. Finally, we give an application to Ding projective modules.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2022
- DOI:
- arXiv:
- arXiv:2203.08673
- Bibcode:
- 2022arXiv220308673M
- Keywords:
-
- Mathematics - Rings and Algebras
- E-Print:
- 18 pages. All comments and suggestions are welcome!