Another approach to weighted inequalities for a superposition of Copson and Hardy operators
Abstract
In this paper, we present a solution to the inequality $$ \bigg( \int_0^{\infty} \bigg( \int_x^{\infty} \bigg( \int_0^t h \bigg)^q w(t)\,dt \bigg)^{r / q} u(x)\,ds \bigg)^{1/r}\leq C \, \bigg( \int_0^{\infty} h^p v \bigg)^{1 / p}, \quad h \in {\mathfrak M}^+(0,\infty), $$ using a combination of reduction techniques and discretization. Here $1 \le p < \infty$, $0 < q ,\, r < \infty$ and $u,\,v,\,w$ are weight functions on $(0,\infty)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2022
- DOI:
- arXiv:
- arXiv:2203.08661
- Bibcode:
- 2022arXiv220308661M
- Keywords:
-
- Mathematics - Functional Analysis;
- 26D10;
- 26D15
- E-Print:
- 13 pages