Is cosmic birefringence due to dark energy or dark matter? A tomographic approach
Abstract
A pseudoscalar "axionlike" field, ϕ , may explain the 3 σ hint of cosmic birefringence observed in the E B power spectrum of the cosmic microwave background polarization data. Is ϕ dark energy or dark matter? A tomographic approach can answer this question. The effective mass of dark energy field responsible for the accelerated expansion of the Universe today must be smaller than mϕ≃10-33 eV . If mϕ≳10-32 eV , ϕ starts evolving before the epoch of reionization and we should observe different amounts of birefringence from the E B power spectrum at low (l ≲10 ) and high multipoles. Such an observation, which requires a full-sky satellite mission, would rule out ϕ being dark energy. If mϕ≳10-28 eV , ϕ starts oscillating during the epoch of recombination, leaving a distinct signature in the E B power spectrum at high multipoles, which can be measured precisely by ground-based cosmic microwave background observations. Our tomographic approach relies on the shape of the E B power spectrum and is less sensitive to miscalibration of polarization angles.
- Publication:
-
Physical Review D
- Pub Date:
- June 2022
- DOI:
- arXiv:
- arXiv:2203.08560
- Bibcode:
- 2022PhRvD.105l3509N
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 11 pages, 12 figures