Object-centric and memory-guided normality reconstruction for video anomaly detection
Abstract
This paper addresses video anomaly detection problem for videosurveillance. Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy, in which our model learns object-centric normal patterns without seeing anomalous samples during training. The main contributions consist in coupling pretrained object-level action features prototypes with a cosine distance-based anomaly estimation function, therefore extending previous methods by introducing additional constraints to the mainstream reconstruction-based strategy. Our framework leverages both appearance and motion information to learn object-level behavior and captures prototypical patterns within a memory module. Experiments on several well-known datasets demonstrate the effectiveness of our method as it outperforms current state-of-the-art on most relevant spatio-temporal evaluation metrics.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2022
- DOI:
- arXiv:
- arXiv:2203.03677
- Bibcode:
- 2022arXiv220303677B
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted at ICIP 2022