Lyapunov stable chain recurrence classes for singular flows
Abstract
We show that for a $C^1$ generic vector field $X$ away from homoclinic tangencies, a nontrivial Lyapunov stable chain recurrence class is a homoclinic class. The proof uses an argument with $C^2$ vector fields approaching $X$ in $C^1$ topology, with their Gibbs $F$-states converging to a Gibbs $F$-state of $X$.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- 10.48550/arXiv.2202.09742
- arXiv:
- arXiv:2202.09742
- Bibcode:
- 2022arXiv220209742G
- Keywords:
-
- Mathematics - Dynamical Systems;
- 37C10;
- 37C27;
- 37C29;
- 37D30
- E-Print:
- 63 pages, 3 figures