irs-partition: An Intrusion Response System utilizing Deep Q-Networks and system partitions
Abstract
Intrusion Response is a relatively new field of research. Recent approaches for the creation of Intrusion Response Systems (IRSs) use Reinforcement Learning (RL) as a primary technique for the optimal or near-optimal selection of the proper countermeasure to take in order to stop or mitigate an ongoing attack. However, most of them do not consider the fact that systems can change over time or, in other words, that systems exhibit non-stationary behaviors. Furthermore, stateful approaches, such as those based on RL, suffer from the curse of dimensionality, due to the state space growing exponentially with the size of the protected system. In this paper, we introduce and develop an IRS software prototype, named irs-partition. It leverages the partitioning of the protected system and Deep Q-Networks to address the curse of dimensionality by supporting a multi-agent formulation. Furthermore, it exploits transfer learning to follow the evolution of non-stationary systems.
- Publication:
-
SoftwareX
- Pub Date:
- July 2022
- DOI:
- 10.1016/j.softx.2022.101120
- arXiv:
- arXiv:2202.08182
- Bibcode:
- 2022SoftX..1901120C
- Keywords:
-
- Intrusion Response System;
- Self-protection;
- Self-adaptation;
- Computer Science - Cryptography and Security;
- Computer Science - Artificial Intelligence;
- Computer Science - Machine Learning
- E-Print:
- Keywords - Intrusion Response System,Self-Protection, Self-Adaptation