Positive solutions to multi-critical Schrödinger equations
Abstract
In this paper, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation \begin{equation} \label{p} \begin{cases} -\Delta u+\lambda V(x)u=\mu |u|^{p-2}u+\sum\limits_{i=1}^{k}(|x|^{-(N-\alpha_i)}* |u|^{2^*_i})|u|^{2^*_i-2}u\quad \text{in}\ \mathbb{R}^N,\\ \qquad\qquad\qquad u\,\in H^1(\mathbb{R}^N), \end{cases} \end{equation} where $\lambda,\mu\in \mathbb{R}^+, \, N\geqslant 4$, and $2^*_i=\frac{N+\alpha_i}{N-2}$ with $N-4<\alpha_i<N,\,i=1,2,\cdots,k$ are critical exponents and $2<p<2^*_{min}=\min\{2^*_i:i=1,2,\cdots,k\}$. Suppose that $\Omega=int\,V^{-1}(0)\subset\mathbb{R}^N$ is a bounded domain, we show that for $\lambda$ large, problem above possesses at least $cat_\Omega(\Omega)$ positive solutions.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- arXiv:
- arXiv:2202.07117
- Bibcode:
- 2022arXiv220207117X
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 20 pages