Space-Time Adaptive Processing via Random Matrix Theory for Finite Training Samples
Abstract
Space-time adaptive processing (STAP) is one of the most effective approaches to suppressing ground clutters in airborne radar systems. It basically takes two forms, i.e., full-dimension STAP (FD-STAP) and reduced-dimension STAP (RD-STAP). When the numbers of clutter training samples are less than two times their respective system degrees-of-freedom (DOF), the performances of both FD-STAP and RD-STAP degrade severely due to inaccurate clutter estimation. To enhance STAP performance under the limited training samples, this paper develops a STAP theory with random matrix theory (RMT). By minimizing the output clutter-plus-noise power, the estimate of the inversion of clutter plus noise covariance matrix (CNCM) can be obtained through optimally manipulating its eigenvalues, and thus producing the optimal STAP weight vector. Two STAP algorithms, FD-STAP using RMT (RMT-FD-STAP) and RD-STAP using RMT (RMT-RD-STAP), are proposed. It is found that both RMT-FD-STAP and RMT-RD-STAP greatly outperform other-related STAP algorithms when the numbers of training samples are larger than their respective clutter DOFs, which are much less than the corresponding system DOFs. Theoretical analyses and simulation demonstrate the effectiveness and the performance advantages of the proposed STAP algorithms.
- Publication:
-
IEEE Sensors Journal
- Pub Date:
- April 2023
- DOI:
- 10.1109/JSEN.2023.3245581
- arXiv:
- arXiv:2202.04878
- Bibcode:
- 2023ISenJ..23.7334S
- Keywords:
-
- Computer Science - Information Theory;
- Electrical Engineering and Systems Science - Signal Processing
- E-Print:
- 24 pages, 5 figures